Tracking Hypoxic Signaling within Encapsulated Cell Aggregates
نویسندگان
چکیده
منابع مشابه
Tracking Hypoxic Signaling within Encapsulated Cell Aggregates
In Diabetes mellitus type 1, autoimmune destruction of the pancreatic β-cells results in loss of insulin production and potentially lethal hyperglycemia. As an alternative treatment option to exogenous insulin injection, transplantation of functional pancreatic tissue has been explored. This approach offers the promise of a more natural, long-term restoration of normoglycemia. Protection of the...
متن کاملStem Cell Therapy in Hypoxic Ischemic Encephalopathy
Introduction there are one million deaths from asphyxia in newborn annually. Management of this newborn is only supportive. Autologuse stem cell therapy may reduce mortality and long term morbidity. Outcome of asphyxiated newborn is related to damage CNS cells. Stem cells prevent Apoptosis and induce repairmen of injured neurons. Methods in a review study all article related to three keyword...
متن کاملProtein-encapsulated gold cluster aggregates: the case of lysozyme.
We report the evolution and confinement of atomically precise and luminescent gold clusters in a small protein, lysozyme (Lyz) using detailed mass spectrometric (MS) and other spectroscopic investigations. A maximum of 12 Au(0) species could be bound to a single Lyz molecule irrespective of the molar ratio of Lyz : Au(3+) used for cluster growth. The cluster-encapsulated protein also forms aggr...
متن کاملCell signaling within the shoot meristem.
Shoot apical meristems are self-renewing stem cell populations that generate all of the above-ground organs (i.e. stems, leaves and flowers) of higher plants. Recent studies have identified new molecular components required for proper shoot meristem activity, and they have revealed that complex, intercellular communication pathways play important roles in coordinating meristem function.
متن کاملMagnetic nanoparticles encapsulated within a thermoresponsive polymer.
This study describes a facile two-step approach to modify the surface of nanoparticles, thereby imparting a core-shell structure to the system. The core consists of magnetic nanoparticles and the shell is composed of thermoresponsive hydroxypropyl cellulose, using a coupling agent to covalently bind the core to the shell. Hydroxypropyl cellulose is known for its biocompatibility and biodegradab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Visualized Experiments
سال: 2011
ISSN: 1940-087X
DOI: 10.3791/3521